Diverse in Discipline and Distance, United in Ambition: Meet the New M.DevEng Cohort!

Integrating her background with her education, Andono aims to center the environment when creating architecture, from its design process, construction, and operation, to create lasting, sustainable change.

The students of the cohort come from various backgrounds and disciplines, yet find commonality in wanting to use their education to innovate and create change in low-resource areas across the world. (Photo by Alisha Dalvi)

By Alisha Dalvi

When the pandemic forced Kristi Andono to move back home to Jakarta from Los Angeles during her undergraduate education, she was able to turn adversity into opportunity and take on a brand new role — the head of the Corporate Social Responsibility team for the Indonesian Energy Corporation. As she balanced taking classes online to fulfill her real estate and architecture degree, she was simultaneously designing shelters for victims of gender-based violence in remote villages, renovations for disintegrating orphanages, and infrastructure for water accessibility. “Growing up in Indonesia has exposed me to degrading environmental conditions and its constant battle with economic growth, where one has to be sacrificed for the other,” Andono said. Integrating her background with her education, Andono aims to center the environment when creating architecture, from its design process, construction, and operation, to create lasting, sustainable change.

From left to right, Esther Mburu, Diane Kabanyana, Martin Ssemulugo, Anjali Ravunniarath, and Charity Fang stand together in an ice breaker activity during orientation where they learn the numerous countries their peers are from. (Photo by Chetan Chowdhry)

Looking to equip herself with new skills to become a holistic changemaker, Andono applied and was accepted to UC Berkeley’s Master of Developmental Engineering program, housed at the Blum Center. This three-semester professional degree is a new program that attracts students across various fields, from business to engineering to economics, to develop technological advancements that address the needs of low-resource communities across the world. 

Andono and 32 other students in the new cohort — the program’s second ever — attended the masked-up M.DevEng orientation on August 23. Through an interactive presentation, students gained insight into UC Berkeley as well as the program specifically. Afterward, students had the chance to mingle and meet for the first time, get to know M.DevEng staff, and go on a tour of Blum Hall — their new home for the next 15 months. This cohort is only the second in history, making them pioneers in the discipline and a fundamental group to shape the future of the program and the field.

Blum Center Faculty Director Dan Fletcher welcomes the new cohort during orientation in a speech that highlights UC Berkeley as a place of initiative, support, and creativity. (Photo by Alisha Dalvi)

“The M.DevEng program is the shining star of educational activities at the Blum Center,” said Dan Fletcher, the center’s faculty director. “It is about finding creative people with initiative, who support each other, bringing them together, and tackling real problems.” Students of the new cohort will take three semesters of development engineering classes as well as elective classes focused on their concentration area, along with one summer internship in between. But the development engineering classes don’t follow one discipline; rather they center around “research and practice that combines the principle of engineering with economics, entrepreneurship, design, business, and policy,” said Yael Perez, the director of Development Engineering programs. 

Director of DevEng programs Yael Perez shows the new cohort the new room dedicated to the M.DevEng program, located at the Blum Center. Students can look forward to a space to collaborate and use the new coffee machine! (Photo by Alisha Dalvi)

That multidisciplinary element is essential to the program. During the orientation presentation, students were asked one word to describe developmental engineering. “Interdisciplinary” was the most common, appearing the largest on the computer-generated word cloud. The integrative approach of the program is especially important for Ash Seth, a product designer from Dubai who pursued a mechanical engineering undergraduate degree at Stanford University and who values the intersection of technology and social impact. As a designer herself, she has prototyped and tested affordable greenhouses for hundreds of smallholder farmers in India. But, as a strategist for an urban design nonprofit, Seth also understands the significance of dialogue across numerous disciplines, from scientists to policy specialists.

Diane Kabanyana, a business and economics major from Rwanda, is not only excited to learn from her peers through their previous academic endeavors, but from the various countries and backgrounds they come from as well. “I’ve only been here a week, but Berkeley is so diverse!” Kabanyana said. “I live at International House and it seems like every country is represented.” 

The new M.DevEng cohort itself is composed of students from over 10 different countries. But being an international student is certainly not a prerequisite. Rachel Dersch is an energy engineer from Michigan. While Dersch has developed solar power projects in Peru and Tanzania, both still up and running today, she also found the need for energy consumption reduction in her own community. By spearheading pilot programs and technology demonstrations, Dersch has been able to work to reduce energy waste in Michigan. When looking to further her education in humanitarian engineering, Dersch found that development engineering is not just a new curriculum, but a new concept in colleges all together. The M.DevEng stuck out as one of the few existing programs that was truly targeted at creating impact in low-income communities. And it didn’t hurt that it’s offered at the top public university in the nation.

On a bright and pleasant day, the new cohort is taken on a tour of the Blum Center during orientation. The new Berkeley residents continuously mention the beautiful weather the Bay seems to have! (Photo by Alisha Dalvi)

Yet for all the diversity in the cohort’s educational and cultural backgrounds, one statement seemed to unite them all: “The food in Berkeley is so good!” 

With students already raving about Boichik Bagels, just a few blocks away from campus, and local coffee shops, the new cohort seems to know where to fuel up before tackling projects which will make a meaningful and measurable impact on low-resource communities across the world.  

Kris Kohler Joins Dev Eng, GPP Programs

Kris Kohler, a sociologist who has taught at universities across California and beyond, joined the Blum Center this fall to teach two courses: Development Engineering 202: Critical Systems of Development, and Global Poverty and Practice 115: Global Poverty: Challenges and Hopes.

Courtesy of Kris Kohler

By Sam Goldman

Kris Kohler, a sociologist who has taught at universities across California and beyond, joined the Blum Center this fall to teach two courses: Development Engineering 202: Critical Systems of Development, and Global Poverty and Practice 115: Global Poverty: Challenges and Hopes. Kohler holds a Ph.D. and M.A. in sociology from UC San Diego and a B.A. in Black studies and political science from UC Santa Barbara. 

Kohler’s research and teaching has centered on transnational activism and social movements, international development (or “underdevelopment,” as he notes), and global sociology. He has lived and worked in two dozen countries, most notably in Zambia, and has served in the Peace Corps, worked as a rural health volunteer, and is a United Nations Sustainable Development Goals Open Pedagogy Fellow. Kohler also has over 80 courses under his belt, including lectureships at San Diego State, UC Santa Barbara, Montgomery College, UC Merced, Stanislaus State University, and Mount St. Mary’s University. 

“UC Berkeley is probably the finest public university in America, if not the world,” he says. “I am a product of California, and the UC system, and the opportunity to teach at UC Berkeley is an honor.”

GPP 115 is a core course of the undergraduate Global Poverty and Practice Minor and focuses on 20th-century development and 21st-century poverty alleviation, and Kohler brings a wealth of first-hand, on-the-ground experience.

“I consider myself a ‘citizen of the world,’ and the challenges of social inequality, poverty, power, and oppression have been concerns of mine for as long as I can remember,” he says. “I majored in ethnic studies, I studied abroad, I participated in the Peace Corps and various social movements. I have studied transnational social movements and international development for a very long time as well. The Global Poverty and Practice course is a wonderful fit for me, providing the opportunity to highlight the role of power and movements in questions of poverty and development.”

“We are excited to have Kris join the teaching team of the GPP Minor,” says Chetan Chowdhry, the Blum Center’s director of student programs and GPP’s lead advisor. “GPP 115 isn’t an easy course to teach, but students in the course have already expressed how much they are learning from it just a few weeks into the semester.”

Kohler teaching DevEng 202: Critical Systems of Development

DevEng 202 is one of two required courses for first-semester Master of Development Engineering students, the inaugural cohort of which started classes last month. M.DevEng students learn a variety of methodological frameworks, the skills needed to participate in the sustainable-development field, and the history and ethics of global development. “I am a ‘pessimistic optimist,’ Kohler says. “I know that ‘another world is possible,’ but strategies for positive social change must be grounded in sophisticated understanding of the challenges which face us.”

“It’s been exciting to sit in the class and see how engaged the students are with the material. It is often hard to stop the conversation for the sake of moving to the next reading and topic,” says M.DevEng program coordinator Yael Perez. “The power of the class was particularly evident when one of the students asked to turn off the recording for a question that he didn’t want to have on any record due to its political sensitivity in the country he is from.”

No one or two perspectives or disciplines are enough to capture the realities of poverty and development. Kohler grounds his teaching in a “globalized, transnational, and international world of experience and scholarship” and “emphasizes cross-national and cross-cultural comparison of sociological concepts,” and pulls from a diverse array of media to accommodate students’ various learning styles and to facilitate cross-cultural communication. Importantly, his courses’ concepts and research are not merely theoretical. “I take great pains to outline the relevance of social and political theory to the lives of real, flesh-and-blood people,” Kohler says.

“We are thrilled to have Kris aboard to teach such pivotal courses in the M.DevEng and GPP programs,” said Prof. Alice Agogino, education director of the Blum Center. “He not only brings a deep and first-hand familiarity with his subjects but also years of experience and passion for teaching the next generation of effective changemakers.” 

Every class, Kohler notes, is an opportunity to debunk myths and hegemonic ideas. “Students in my courses are constantly challenged to interrogate dogmatic understandings of globalization, economics, democracy, freedom, justice, crime, race, gender, culture, and nation,” he says.

Meet the Inaugural M.DevEng Cohort

Students from around the U.S. and the world — coming from the fields of finance, electrical engineering, nursing, and beyond — make up the inaugural cohort of the three-semester professional master’s program in development engineering, a transdisciplinary field founded at UC Berkeley that creates technology interventions in accordance with and for individuals living in low-resource settings.

Students of the inaugural cohort of the M.DevEng program came from around the U.S. and the world and bring experience in everything from nursing to electrical engineering to finance. (Photo by Judah Marsden)

By Sam Goldman

Barbara Mensah had studied education, founded her own organization to empower rural girls, and worked at a university in Ghana. But wanting to take the next step in her education and career, she had applied and been accepted to UC Berkeley’s first cohort of the brand-new Master of Development Engineering (M.DevEng) program, housed at the Blum Center. It would be a 7,700-mile trip.  

The program had nominated Mensah for a Mastercard Foundation scholarship. When she accepted it, she and other UC Berkeley recipients of the scholarship received an informational email with each other’s names and emails visible. One name stood out. “Is this the Patricia Quaye I know?” she asked herself.

Mensah sent Quaye a WhatsApp message, asking if she was the Patricia Quaye she knew from university in Ghana — the one who had received the same scholarship as Mensah in undergrad. She was. Both, it turned out, chose the Sustainable Design Innovations track of the five M.DevEng tracks available, and both, like many of their peers from abroad, are part of UC Berkeley’s I-House community. Both had even been working in education in Ghana, and now, on another continent, they’re neighbors.

Barbara Mensah (left) and Patricia Quaye attended the same university together in Ghana but didn’t know the other had applied to the M.DevEng program. Both chose the Sustainable Design Innovations track. (Photo by Judah Marsden)

Mensah, Quaye, and 44 other students from around the U.S. and the world — coming from the fields of finance, electrical engineering, nursing, and beyond — make up the inaugural cohort of the three-semester professional master’s program in development engineering, a transdisciplinary field founded at UC Berkeley that creates technology interventions in accordance with and for individuals living in low-resource settings. 

As the Berkeley campus transitions to a mostly in-person fall semester, most students were able to attend a masked-up, open-windows welcome orientation on August 23. “It’s been a long journey for you to get here,” said Shankar Sastry, Blum Center faculty director, professor of computer science, and leader of the M.DevEng AI/Data Analytics track. “It’s particularly exciting to be here in person after an extraordinarily challenging year.” 

“The idea of development engineering is to combine the social sciences with the hard sciences, technology and engineering, and policy,” said Alice Agogino, Blum’s education director, professor of mechanical engineering and leader of the Sustainable Design Innovations track. “We want to tackle problems that require system-level solutions — systems solutions that require multiple disciplines.”

Mathews Tisatayane (left) and Greg Berger get to know each other on a tour of campus after the welcome orientation. (Photo by Judah Marsden)

The new cohort is diverse not only in geographic origin, but also in training and age. Shubham Salunkhe arrived straight out of undergrad at the University of Illinois, Chicago. After interning at UIC’s Energy Resources Center, he decided he needed to gain more knowledge before diving into industry. Malawi native Mathews Tisatayane spent the past decade working as a nurse in San Francisco, while masterminding community-oriented avenues for building wealth and stability on a local level in Malawi.

Tisatayane had devised solar-powered egg-incubators and brooders to support a chicken-raising operation in his hometown. If his community raised their own birds, they would eat well, which meant better health, self-reliance, and opportunity. Faulty machinery derailed the project, but motivated him to learn more. He discovered Berkeley’s Renewable and Appropriate Energy Lab (RAEL), run by Professor Daniel Kammen, a Blum Center faculty member. His search led him to the new M.DevEng program, which he decided could provide the skills and networking bridge he needed to make a lasting impact in Malawi and, eventually, beyond.

Abigail Chin introduces herself during a welcome-orientation icebreaker. (Photo by Judah Marsden)

“I’m a little bit emotional, a little bit in disbelief,” Tisatayane said of starting graduate school at age 48. His younger peers, he said, were “working forward” on building their skills, “while I’m working backward” on filling them in. 

Despite the momentousness of arriving at the top university in the U.S., however, the most common surprise among students didn’t have to do with rigorous academics, eye-popping Bay Area rents, or “Berserkeley” culture.

“California is so hot,” Quaye recalled hearing as she prepared to move from the hot climes of Ghana. “But it’s cold!” she added, sitting outside Blum Hall after orientation. 

(From left) Raghav Mittal, Curtis Wong, and Barry McLaughlin catch up during orientation. (Photo by Judah Marsden)

Raghav Mittal, who arrived two days prior from the outskirts of Delhi, India — another legitimately hot area — had the same expectations: the sunny California of the media and postcards. 

Nope. 

“That’s why I’m always wearing a jacket,” he said on a campus tour following orientation. 

But it will be in this fickle climate that Mittal, Quaye, and their peers will begin building projects that will make a tangible impact on the well being of those in low-resource areas.

“Consider yourselves the leaders of this field,” M.DevEng program coordinator Yael Perez told the inaugural group at their orientation’s opening remarks — “a field in the making.”

Ph.D. Student Paige Balcom Turns Awards into Innovation and Social Change in Uganda

Paige Balcom was in Uganda when COVID hit. The country quickly instituted a strict lockdown—all borders and airports closed, transport stopped, a strict curfew and other restrictions were enforced by the military, misinformation spread, and many people couldn’t get food. In the fall, the UC Berkeley Ph.D. student’s classes went remote, and she dealt with the 10-hour time difference.

Balcom and fellow Takataka Plastics employees hold tiles they produced out of PET waste

Paige Balcom was in Uganda when COVID hit. The country quickly instituted a strict lockdown—all borders and airports closed, transport stopped, a strict curfew and other restrictions were enforced by the military, misinformation spread, and many people couldn’t get food. In the fall, the UC Berkeley Ph.D. student’s classes went remote, and she dealt with the 10-hour time difference. 

Ugandan hospitals were facing a critical shortage of personal protective equipment, and Balcom, a mechanical engineer and InFEWS fellow at the Blum Center for Developing Economies, and her team decided to make PPE for them.

In January 2020, Balcom and Peter Okwoko, a Ugandan environmental and community activist and lecturer at Gulu University, founded Takataka Plastics, which recycles plastic waste into usable household goods. They began churning out face shields, over 18,000 of which have now been distributed to frontline workers across Uganda. Though “Uganda pulled through OK,” she says, “the last year has been crazy.”

UC Berkeley mechanical engineering Ph.D. candidate Paige Balcom in Uganda

Balcom has just finished the fourth year of her M.E. Ph.D., where she’s majoring in heat transfer and minoring in development engineering and design. Earlier this spring, she won the $15,000 “Use It!” Lemelson-MIT Student Prize for Takataka Plastics’ system for recycling polyethylene terephthalate (PET) waste, a common plastic used in everyday goods like water bottles. “PET waste is a significant problem across the developing world because many countries like Uganda lack the infrastructure and technology to recycle this plastic, and it is often infeasible to ship it elsewhere for recycling,” the Lemelson-MIT Program wrote. Balcom plans to turn her prize money into grants for local innovators in the East African country.

PET’s brittleness and semicrystalline nature make it difficult to recycle, but Balcom’s invention changes the chemical structure of PET enough to make it salvageable using a manually powered and locally made system. 

The Lemelson-MIT Student Prize is far from her first accolade. Balcom was the 2016 University of New Hampshire Woman of the Year, and from 2016 to 2017, she spent 10 months in Uganda as a Fulbright Scholar studying aquaponics. She has received a USAID Global Development Fellowship, and, in 2018, she and her teammates finished second in the Energy and Resources Alternatives category at the Big Ideas Contest with their venture Trash to Tiles, a precursor to Takataka Plastics. The following year, Trash to Tiles won the Scaling Up Big Ideas category. Early last year, Takataka Plastics won Stanford University’s first Global Energy Heroes competition; soon after, the Clinton Global Initiative University awarded Balcom a COVID-19 Student Action Fund for the company’s face shields. From 2019 to 2020, Balcom was also an inaugural fellow with the Institute for International Education’s Centennial Fellowship. At Berkeley, she’s received an NSF Graduate Research Fellowship, a Chancellor’s Fellowship, and a Tau Beta Pi Fellowship.

The engineering innovations are only one aspect of Takataka Plastics. “I get super excited about the impact Takataka is having in the community through the jobs we create that are transforming people’s lives and through our outreach efforts changing mindsets about plastic waste,” says Balcom, who first visited Uganda as an undergrad with Engineers Without Borders.

The company’s waste collection reduces community health hazards. It employs survivors of war, exploitation, and human trafficking, whom the company connects to care organizations that provide counseling and life skills. And Takataka is growing quickly, too. It’s up to 16 employees, nine of whom, Balcom says, are “former street-connected youth.” 

“Their creativity, passion, hard work, innovativeness, and desire to serve their community inspire me,” she says of her coworkers. “I consider it a privilege to work with them every day.”

Currently, Takataka sells wall tiles and coasters in addition to face shields. Its goal is to be able to recycle 9,000 kilograms of plastic a month in Gulu — half of the city’s PET waste.

Balcom hopes to graduate next May, move back to Uganda, and expand Takataka. “We’re always working on new products, entering new markets, exploring different sales strategies, and hiring new staff. There are always new opportunities, partnerships, and projects,” she says. “We can’t keep up with the orders, so we’re working on scaling up our production capacity.”

She also plans to lecture at Gulu University. “I really love teaching the engineering students,” she says. “They have so many bright ideas!”

“I’d like to thank my mom and dad, sisters, friends, professors, and mentors who have invested in me and encouraged me. Winning an award such as the Lemelson-MIT Student Prize would not have been possible without all of their support,” Balcom adds. “I’d also like to give a big shout out to the Big Ideas competition and Haas [School of Business] startup programs that guided me through developing the initial Takataka Plastics model. And I’d like to thank God for blessing me with so many opportunities in life.”

Student Teams Partner with DoD to Improve Disaster Response

Language barriers, international communiques requiring Embassy review, and disaster workers who are 6,300 miles away — not to mention a global pandemic — were just some of the challenges addressed by UC Berkeley students working with the Moroccan Royal Armed Forces Search and Rescue Unit. This incredible experience was part of a popular class supported by the National Security Innovation Network (NSIN), in partnership with the Blum Center for Developing Economies.

Prototype for FireFly, an augmented reality helmet that “seamlessly connects to a mesh network of drones to provide real-time navigational and situational data to firefighters actively working to suppress wildfires.”

By Sam Goldman 

Language barriers, international communiques requiring Embassy review, and disaster workers who are 6,300 miles away — not to mention a global pandemic — were just some of the challenges addressed by UC Berkeley students working with the Moroccan Royal Armed Forces Search and Rescue Unit. This incredible experience was part of a popular class supported by the National Security Innovation Network (NSIN), in partnership with the Blum Center for Developing Economies. 

The Royal Armed Forces are among Morocco’s top responders to major disasters, which occurred with a 22-fold increase from 2000 and 2014. Since 2003, the Royal Armed Forces have collaborated with the Utah National Guard through the Department of Defense’s State Partnership Program, which seeks to strengthen global security, foster long-term relationships, and directly assist places in need. These responders must make quick life-and-death decisions in crisis situations, often with very little context. To support better outcomes, the UC Berkeley student team developed a prototype desktop application to coordinate disaster operations and monitor real-time data on the ground. 

This team, and five others enrolled in “Innovation in Disaster Response, Recovery and Resilience” (IDR3), presented their final projects in a showcase attended by over 50 representatives from the Department of Defense (DoD), USAID, startups, the venture community, and leaders in disaster tech. 

DoD partners from the U.S. Central Command, Army Futures Command, the Utah National Guard, and more were brought in by Kaitie Penry, UC Berkeley’s university program director for the NSIN, a program sponsored by the Undersecretary of Defense for Research and Engineering; its mission is to bring new communities of innovators together to solve national security problems by partnering with academia and early-stage ventures.

The NSIN partners “have real-life, challenging, complex problems and are responsible for disaster response, which is what makes these projects such authentic learning,” says Professor Alice Agogino, the founder of the field of Development Engineering and Blum Center associate director of education. “These weren’t toy problems. Some of these projects are going to see the light of day. That’s what’s really exciting about it.” 

Agogino co-taught the course with lead instructor Vivek Rao, a lecturer at Haas and a researcher in mechanical engineering, who helped pilot an earlier version of the course.

The six team projects were each sponsored by an agency important to national security:

  • Working with the Army Futures Command, FireFly is an augmented reality helmet that “seamlessly connects to a mesh network of drones to provide real-time navigational and situational data to firefighters actively working to suppress wildfires.”
  • Working with U.S. Northern Command and the U.S. Coast Guard, iOSOS is a smartphone app that activates during a disaster and “allows the user to send a quick SOS request, helping both rescue agencies and civilians through this streamlined process.”
  • Working with the Utah National Guard and the Morocco Royal Armed Forces, the Digital Disaster Portal is a dashboard and application that agencies can use to coordinate operations and monitor real-time data on the ground.
  • Working with U.S. Central Command in Qatar, ID SCAN is an ID scanner that military personnel can use to update their status and location, which leaders can access in a user interface to make quick personnel-allocation decisions. 
  • Working with the Naval Information Warfare Systems Command – Pacific, which deals with places with varying connectivity during a disaster, the team created new tools for visual and temporal representations of information coming through the various lines of communication used by first responders.
  • Working with Joint Base Pearl Harbor–Hickam, the team developed a hangaring planning tool so that military aircraft remain on bases during hurricanes instead of being evacuated, and are thus able to respond more quickly to disaster events.

“The inherent talent of the Berkeley students to solve national security problems that have a real impact is incredible,” says Penry, the NSIN program director at Berkeley. “The projects that the teams worked on will have a real impact in disaster response, making it more effective for the DoD to act quickly and save lives.”

“What was very clear when the students walked down this path is that we didn’t even know our own process for how to hangar aircraft. There was essentially nothing on the board at all,” says  Major Niko Votipka of Joint Base Pearl Harbor–Hickam. “This project was really a forcing function for the maintainers and the weather shop and leadership to really figure out a good process moving forward for something that is so critical and we struggle with every hurricane season.”

These unique and interesting challenges attracted a diverse group of students. More than 60 percent of students who enrolled were women, with 10 academic disciplines represented. “For an engineering class that involves heavy project-based work, this definitely looks different than the overall demographics of the College of Engineering,” Rao says. “Focusing on this type of problem domain — applying innovation to social-impact issues — really drew a different audience, and we’re really excited to continue to build on that at the Blum Center.”

“It was really inspiring to see how evidence-based the students made their decisions,” says Deniz Dogruer, IDR3’s graduate student instructor and a Ph.D. student in the Graduate Group of Science, Mathematics, and Engineering Education. “They were really taking into account what they were hearing from their stakeholder interviews to really motivate and justify any pivots or any changes they were making.”

That end-user focus, combined with hefty research into the problems they were tackling, led to a wide array of potential solutions that the teams scrutinized to narrow down to the most effective. “I think that was exciting for some people because the possibilities are really endless,” says Yakira Mirabito, a Ph.D. student in mechanical engineering on the Digital Disaster Portal team.

Teams had the opportunity to work on-site with their DoD clients. For example, the aircraft-hangaring team 3D-printed some of their prototypes at Joint Base Pearl Harbor–Hickam and the rest in Berkeley, before shipping their work across the ocean. Similarly, the FireFly team demoed their helmet prototype at an Emeryville fire station. 

“We had an awesome time experimenting and developing our various prototypes, and it was also very exciting garnering feedback from firefighters and other stakeholders regarding the prototypes we developed,” says Nicholas Callegari, a mechanical engineering student. “Most of our team members had not worked with an organization like [the Army Futures Command] before, and it ended up being a great learning experience that exposed us to the managerial styles and organization of a specialized government entity.”

“I thought the projects were extremely impressive and mature,” says Penry. “The level of prototype that most of the teams were able to get to by the end of the semester was extraordinary.”

Going forward, the Digital Disaster Portal team has an invitation to attend the Moroccan Royal Armed Forces’ annual natural disaster mission exercises this fall to demo their tools — tools that the Utah National Guard is also interested in implementing closer to home. “The design challenge that [the Royal Armed Forces] presented was just really what they think they needed,” Mirabito concluded, “and what we presented is taking that idea and kind of exploring multiple facets of it.” That analysis and perspective is exactly what the NSIN course is designed to do — providing DoD units with new insights into possible solutions, and UC Berkeley students with an opportunity to focus their energy and talents on challenges that matter.”

DevEng & InFEWS fellow Paige Balcom wins 2021 Lemelson-MIT Student Prize

DevEng PhD student and InFEWS fellow, Paige Balcom, was awarded the prestigious Lemelson-MIT Student Prize for her work on recycling plastic waste in Uganda. Together with Peter Okwoko, Paige founded Takataka Plastics, an organization that develops innovative solutions for plastic waste and social change in Uganda. The Lemelson-MIT Student Prize recognizes undergraduate teams and graduate students who have invented solutions in prize categories that represent significant sectors of the global economy.

Courtesy of Silvia Ahn and Lemelson-MIT

DevEng PhD student and InFEWS fellow, Paige Balcom, was awarded the prestigious Lemelson-MIT Student Prize for her work on recycling plastic waste in Uganda. Together with Peter Okwoko, Paige founded Takataka Plastics, an organization that develops innovative solutions for plastic waste and social change in Uganda. The Lemelson-MIT Student Prize recognizes undergraduate teams and graduate students who have invented solutions in prize categories that represent significant sectors of the global economy. The “Use It!” Category, that Paige won, rewards students working on technology-based inventions that involve consumer devices or products.

Paige was selected through a highly-competitive process that involved three rounds of committees and jury, evaluating the overall inventiveness of her work, the potential for commercialization/adoption of the invention, the systems and design thinking approach applied to the development of the invention, youth mentoring and leadership experience, and faculty recommendations. Winning the Lemelson-MIT Student Prize will provide Paige new opportunities and support for her work as an inventor! Congratulations again!

Warm Visit Week Welcome for Admitted M.DevEng Students

In early April, the first cohort of accepted students in the Blum Center’s inaugural Masters of Development Engineering program (M.DevEng) heard from award-winning faculty, social entrepreneurs, and student researchers and innovators, and also toured labs, Blum Hall, and iconic Berkeley landmarks – all virtually – in anticipation of reuniting in person on campus this fall.

Visit Week on OhYay session with faculty and admitted M.DevEng students

By Jason Liu 

In early April, the first cohort of accepted students in the Blum Center’s inaugural Masters of Development Engineering program (M.DevEng) heard from award-winning faculty, social entrepreneurs, and student researchers and innovators, and also toured labs, Blum Hall, and iconic Berkeley landmarks – all virtually – in anticipation of reuniting in person on campus this fall.

Visit Week included more than 30 events pulled largely from the ongoing spring schedule of classes and events, plus program introductions, colloquia, open office hours, and informal opportunities to meet and socialize.

The kickoff event introduced faculty leads of M.DevEng concentration areas. Blum Center Education Director and Roscoe and Elizabeth Hughes Professor of Mechanical Engineering Alice Agogino – who founded the Development Engineering field at Berkeley in 2014 – spoke on Sustainable Design Innovations. Blum Center Faculty Director and Thomas Siebel Professor of Computer Science S. Shankar Sastry represented AI/Data Analytics for Social Impact. Blum Research Director and Purendu Chatterjee Chair in Engineering Biological Systems Dan Fletcher introduced the Healthcare concentration, and Vice Chair of the DevEng Graduate Group and S.J. Hall Chair in Forest Economics Matthew Potts addressed the Energy, Water, and Environment concentration.

“We’d like you to let your imagination run about how you can use AI to think about ways of changing the world and to pay attention to social concerns,” Sastry said to the admitted students.

On Monday, Professor of Civil and Environmental Engineering Ashok Gadgil welcomed accepted students Zooming in from as far away as Indonesia and Nigeria to his CE209 class on Design for Sustainable Communities. Celebrated for the invention of the Berkeley-Darfur Stove, Gadgil’s lab focuses on development engineering projects to alleviate poverty and human suffering. Guest lecturer Susan Amrose, a former doctoral student at the Gadgil Lab, discussed electrocoagulation techniques to remove arsenic from groundwater in low-resource settings, from Bangladesh to California’s Central Valley. 

On Tuesday, Professor of Nuclear Engineering Dan Kammen lectured on the intersection of religion, faith, and climate justice as part of his ERG160 Climate Justice course, diving into the themes of Pope Francis’ 2015 encyclical Laudato si’ and work by faith-based communities. An internationally known expert on climate policy, Kammen was lead author of the IPCC’s Climate Change report in 2007, which was recognized with a Nobel Prize that same year.

The new cohort joined Professor Agogino and Research Fellow and InFEWS Program Coordinator Yael Perez at their DevEng210 class on Wednesday, where seminar students presented case studies. Sam Miles showcased his OffGridBox, a shipping container retrofitted to provide off-grid energy and clean water, and Adrian Hinkle discussed how to use wastewater to detect COVID-19 hotspots. Visiting Professor of Development Economic Policy and Brookings Institution Senior Fellow Louise Fox, also a former chief economist at USAID, sat in on the session and offered feedback to the students. 

Launching this fall, Berkeley’s Master of Development Engineering is a new program focused on integrated approaches to address high-impact problems in low-income areas around the world. Headquartered in the Blum Center for Developing Economies, the program combines depth and breadth to equip students with the tools they need to pair technical interventions with societal, cultural, and ecological dimensions. 

“These students are phenomenal,” said Agogino. “It was such a pleasure to see all the things they’ve already done not just academically but also in the field. They’ll be a cohort of change-makers.”

Gadgil’s Infant Warmer ‘Warming Indicator’ upgrade wins Patents for Humanity award

Blum faculty Ashok Gadgil and Berkeley Lab research scientist Vi Rapp (Ph.D.’11 ME) won a “Patents for Humanity” award for their Warming Indicator, a phase-change material temperature indicator that improves the Infant Warmer’s functionality and safety, received a 2020 Patents for Humanity award.

Blum faculty Ashok Gadgil and Berkeley Lab research scientist Vi Rapp (Ph.D.’11 ME) won a “Patents for Humanity” award for their Warming Indicator, a phase-change material temperature indicator that improves the Infant Warmer’s functionality and safety, received a 2020 Patents for Humanity award. The Infant Warmer is a low-cost, convenient, re-usable, and non-electric wrap-around pad that maintains a temperature of 37 degrees Celsius/98.6 degrees Fahrenheit for approximately six hours for a newborn infant.
Read more here: https://eta.lbl.gov/award/honorable-mention-2020-patents-humanity

Jennifer Doudna on the Pandemic Year: The Power of Mission-Driven Science

In this WSJ op-ed, Nobel prize-winning CRISPR co-inventor Jennifer Doudna describes UC Berkeley’s research response to the pandemic, including the creation of a new rapid, point-of-need COVID test developed with Blum Center Research Director and CellScope inventor Dan Fletcher.

In this WSJ op-ed, Nobel prize-winning CRISPR co-inventor Jennifer Doudna describes UC Berkeley’s research response to the pandemic, including the creation of a new rapid, point-of-need COVID test developed with Blum Center Research Director and CellScope inventor Dan Fletcher.

Read more here: https://www.wsj.com/articles/jennifer-doudna-on-the-pandemic-year-the-power-of-mission-driven-science-11616080902?page=1

The Pandemic Pushed This Farmer Into Deep Poverty – Then Something Amazing Happened

NPR: The Togo government partnered with Blum faculty member & I-School associate professor Joshua Blumenstock to use satellite imagery and mobile phone data to find citizens most in need. “Mobile phone data can reveal a lot about income level,” says Blumenstock.”

NPR: The Togo government partnered with Blum faculty member & I-School associate professor Joshua Blumenstock to use satellite imagery and mobile phone data to find citizens most in need. “Mobile phone data can reveal a lot about income level,” says Blumenstock.” Read more here.

Additional Press Coverage:

Wired: A Clever Strategy to Distribute COVID Aid – With Satellite Data
Fast Company: How GiveDirectly is finding the poorest people in the world – and sending them cash
BBC: Wealth and poverty mapped using mobile phone data
The Economist: In poor countries, statistics are both undersupplied and underused

Agogino Awarded for Faculty Service

Blum Center Education Director Alice Agogino, and on Berkeley Engineering’s faculty since 1984, has received the 2021 Berkeley Faculty Service Award, along with mechanical engineering colleague Oliver O’Reilly, the 2021 award co-recipient.

Blum Center Education Director Alice Agogino, and on Berkeley Engineering’s faculty since 1984, has received the 2021 Berkeley Faculty Service Award, along with mechanical engineering colleague Oliver O’Reilly, the 2021 award co-recipient.

The Berkeley Faculty Service Award is given annually to honor a member of the Berkeley Division of the Academic Senate who has provided outstanding and dedicated service to the University.

“In this, of all years, to stand out for effort and dedication, is truly an accomplishment,” says S. Shankar Sastry, faculty director of the Blum Center for Developing Economies at UC Berkeley. “As a testimony to her service, even in the midst of the pandemic Alice has been able to take the lead in getting the new Masters of Development Engineering approved for a fall 2021 start.”

Agogino first established Development Engineering at the Blum Center with a Graduate Group and Ph.D. concentration in 2016. The new MDevEng professional master’s degree program represents a major expansion for the field.

A Berkeley alumna (M.S. ’80 ME), Agogino is the Roscoe and Elizabeth Hughes Professor of Mechanical Engineering at Berkeley Engineering; she is also affiliated faculty at the Haas School of Business, Energy Resources Group, and Women and Gender Studies.

COVID-Scope: Mobile Phone-Based Virus Detection

A collaboration between Blum Center Research Director and bioengineering professor Dan Fletcher, Professor Jennifer Doudna of UC Berkeley’s Innovative Genomics Institute, and Dr. Melanie Ott of UCSF’s Gladstones Institutes is developing a CRISPR-Cas13a-based diagnostic to rapidly detect SARS-CoV-2 RNA.

Courtesy Dan Fletcher

A collaboration between Blum Center Research Director and bioengineering professor Dan Fletcher, Professor Jennifer Doudna of UC Berkeley’s Innovative Genomics Institute, and Dr. Melanie Ott of UCSF’s Gladstones Institutes is developing a CRISPR-Cas13a-based diagnostic to rapidly detect SARS-CoV-2 RNA. This mobile phone-based diagnostic technology aims to provide results in under 15 minutes and could rapidly increase diagnostic capacity worldwide. 

Read the full Berkeley News story here.

Press coverage
Forbes, December 13, 2020
Can CRISPR-Based COVID-19 Testing Using Smartphones Slow the Pandemic?
https://www.forbes.com/sites/robertglatter/2020/12/13/can-crispr-based-covid-19-testing-using-smartphones-slow-the-pandemic/?sh=49e1919a314c

San Francisco Business Times, December 8, 2020
Covid test may be as close as your smartphone, say UC, Gladstone researchers
https://www.bizjournals.com/sanfrancisco/news/2020/12/08/covid-19-coronavirus-at-home-test-crispr-doudna.html

Business Insider, December 4, 2020
New CRISPR-Based Test for COVID-19 Uses a Smartphone Camera
https://markets.businessinsider.com/news/stocks/new-crispr-based-test-for-covid-19-uses-a-smartphone-camera-1029866479?op=1

ABC7 News, January 11, 2021
Bay Area researchers develop new rapid COVID-19 that uses smartphone camera
https://abc7news.com/cellphone-covid-testing-crispr-test-smartphone-detects-phone-camera/9568999/

Amy Pickering Named Assistant Professor in Development Engineering

The Blum Center is pleased to announce that Amy Pickering has accepted the position of Assistant Professor in Development Engineering, a joint Blum Center-College of Engineering appointment made possible through a generous gift from Richard C. Blum and an anonymous donor.

The Blum Center is pleased to announce that Amy Pickering has accepted the position of Assistant Professor in Development Engineering, a joint Blum Center-College of Engineering appointment made possible through a generous gift from Richard C. Blum and an anonymous donor. Pickering, the Tiampo Family Assistant Professor in Civil and Environmental Engineering at Tufts University, will commence her teaching and research duties at Berkeley in January 2021.

Professor Alice Agogino, who led the search committee and is the Blum Center’s Director of Education, notes that Pickering’s background ideally matches the needs of the Development Engineering position. She had over a decade of experience in multidisciplinary research in development, high quality scholarship, and an impressive record in both teaching innovations and diversity, equity, and inclusion contributions.

Pickering received a BS from Cornell University in Biological Engineering, a MS from UC Berkeley in Civil and Environmental Engineering, and a PhD from Stanford University in the Emmett Interdisciplinary Program in Environment & Resources. Her current and proposed research directions are in developing novel water and sanitation technologies, impact evaluation of scalable interventions on child health and development, and environmental surveillance for infectious diseases. She has >70 peer-reviewed publications.

Pickering has been Principal Investigator or Co-Investigator on 22 current or completed research grants from the NIH, NSF, USAID, the World Bank, and foundations including the Thrasher Research Fund, Saint Anthony Foundation, the Bill and Melinda Gates Foundation, and Givewell. She has 15 years of field experience in development in Bangladesh, Benin, India, Kenya, Mali, Malaysia, Mexico, Sri Lanka, and Tanzania.

With her strong teaching record in Environmental Engineering and Development Engineering, Pickering said she is eager to contribute to teaching the Design, Evaluate, and Scale Development Technologies course and to design new courses, such as Public Health Impacts of Climate Change and Ethics in Development Engineering. She also expects to continue her strong record of mentoring students, especially women and underrepresented minorities. 

Professor Agogino said the search committee was particularly impressed by Pickering’s work with KQED developing an e-book to engage students in STEM topics that featured an inexpensive water purification device she co-designed for use in Dhaka, Bangladesh, an initiative that included collaboration with Blum Center students. Her research has enjoyed strong interest from the press, with articles and podcasts in BBC World Service, New York Times, Lancet Press Office, Everyday Health, The Hindu, World Bank, and the ASME Global Development Review.

Another Year of Outstanding Development Engineering and InFEWS Doctoral Graduates

Now in its sixth year, the Development Engineering PhD program enables UC Berkeley doctoral students from engineering and social science fields to pursue applied technological research in low-resource regions around the world. The InFEWS—Innovations at the Nexus of Food, Water, and Energy Systems—Fellowship, as part of this doctoral program, enables students to work with and for poor communities that face extreme challenges accessing nutritious food, clean and reliable energy, and safe water. Both programs recognize and stand to correct Paul Polak’s observation that 90 percent of the world’s design efforts are aimed at 10 percent of the population.

Among this year’s graduates are: Julia Kramer, who received a PhD in Mechanical Engineering and a Master in Public Health and whose research focuses on global health and equity; Alana Siegner, a graduate of the Energy and Resources Group whose work addresses food distribution, access, and justice questions; and Christopher Hyun, also a PhD graduate of the Energy and Resources Group, whose research addresses water, pollution, and development, largely in South Asia.

Julia Kramer: Design for Global Health Accessibility

Julia Kramer has earned multiple advanced degrees at UC Berkeley: a Master of Public Health, a PhD in Mechanical Engineering, and a Designated Emphasis in Development Engineering. In addition to her scholarly work, she is co-founder of Reflex Design Collective, a consulting firm that uses design thinking to fight social inequality, and Visualize, a nonprofit dedicated to empowering and supporting midwives to screen for cervical cancer.

Kramer’s dissertation, “Designing for Health Accessibility: Case Studies of Human-Centered Design to Improve Access to Cervical Cancer Screening,” is based on her Development Engineering work in Ghana, India, and Nicaragua. She describes the impetus and framework for her research thus: “Our world faces immense challenges in global health and equity. We see huge disparities in access to health care across geographies, and while we have made massive strides in addressing health issues, we know that these disparities persist. In my dissertation, I explore the role of human-centered design to improve global health access. Human-centered design, a cross-disciplinary creative problem-solving approach, has been applied and studied in both academic research and industry practice, but its role in improving global health access remains poorly understood.

“I present research on designing for health accessibility in the context of one particular disease: cervical cancer. Cervical cancer is an illustrative example of the global disparities in access to health care, given that cervical cancer is preventable. Every year, 300,000 women around the world die of cervical cancer, and 90% are  in low- and middle-income countries. My research examines the work of two organizations that created unique solutions to improve access to cervical cancer screening in India and Nicaragua. I developed case studies of each organization grounded in ethnographic fieldwork, including over 250 hours of observation and 15 interviews over two years. Through these case studies, I show how early efforts to understand the barriers inhibiting cervical cancer screening access allow design practitioners to create novel and feasible ways to address these barriers. This demonstrates the importance of design practitioners considering multiple dimensions of accessibility, while conducting design research in order to improve the potential impact of their ideas and prototypes. Overall, this dissertation establishes the foundation of a new framework to ‘design for accessibility’ that can spark further research across sectors, including but not limited to global health.”

Alana Siegner: Education at the Intersection of Food Systems and Climate Change

After graduating with a double major in Environmental Studies and International Relation from Tufts University, Alana Siegner spent three summers in Uganda working on an Engineers Without Borders clean water storage project. Siegner then served as an AmeriCorps National Teaching Fellow with Citizen Schools, working with 8th graders in Boston Public Schools. At UC Berkeley, where she completed a PhD from the Energy & Resources Group (ERG) and was an InFEWS Fellow, she researched sustainable, agroecological food systems and farm-to-school programs as mechanisms for developing student environmental and climate literacy. Her master’s project focused on the San Juan Islands as a case study of high-functioning school food programs and environmental education; and she served as a sustainable agriculture intern for two summers, working alongside small scale diversified farmers on Lopez Island. Siegner has developed, implemented, and evaluated food and climate change curriculum. She served as a graduate student researcher with the Berkeley Food Institute, working on a study of East Bay urban agroecology, with a focus on food distribution, access, and justice questions; and as an agriculture and plumbing systems engineer for the THIMBY tiny house project, a collaboration of ERG students, faculty, and graduate students from other departments.

The dissertation chapter most closely tied to Siegner’s InFEWS Fellowship is “Education: Experiential Food and Climate Change Curricula on Farms, in School Gardens, and in Humanities Classrooms.” It addresses the motivation for creating experiential, interdisciplinary, action- and solution-oriented climate change educational resources for a variety of educational settings. Using an integrated Food-Energy-Water nexus framing, she introduces concepts of systems thinking and experiential learning about natural resources as they relate to climate change education in the United States. Examples of experiential and solutions-oriented interdisciplinary curricula are provided from the San Juan Islands in Washington state, from Oakland, California, and from Washington, D.C. 

Christopher Hyun: The Challenge of Sanitation in Low-Income Communities    

Christopher Hyun has over a decade of experience in South Asia, working on water, sanitation, pollution, culture, religion, and development, particularly in the Ganges River Basin in Varanasi, India. He has worked with multiple NGOs on capacity building, education, and watershed and waste management. He earned a M.Sc. in Environmental Science from Banaras Hindu University, and in 2013 moved to Berkeley to join the master’s program in the Energy & Resources Group, then continuing on to become an InFEWS Fellow and complete his PhD at ERG with a Designated Emphasis in Development Engineering.

Hyun’s dissertation, “Shit, Now What? Overcoming the Struggles of Infrastructure, Inequity, and Capacity to Achieve Sanitation for All,” details how and why inadequate sanitation is a hallmark of low-income communities in low- and middle-income countries. He writes: “The United Nations Sustainable Development Goal 6 (SDG 6) attempts to address this challenge by declaring ‘sanitation for all’ and targeting a 50 percent reduction of ‘untreated wastewater’ by 2030. However, urban areas of low- and middle-income countries have struggled to reach such treatment targets. Since the 1980s, development practitioners and researchers have interrogated the reasons for these shortcomings, primarily focused on the need for decentralized technology; however, increasingly blame has focused on the complexity of social phenomena. My scholarship is grounded in empirical research on the challenge of sanitation in low-income communities. While centered on the crisis of sanitation, I seek to advance and inform critical theoretical and policy-relevant debates on socio-technical systems, local governance, and capacity building.

“I hypothesize that sanitation shortcomings indicate gaps and miscommunications in our collective understanding of sanitation systems. Practitioners and researchers often base interventions on the ‘sanitation service chain,’ which defines the sanitation system as an engineering one as opposed to one with both social and technological dimensions. Therefore, I ask: (1) What are the definitions, functions, and actors of sanitation uncovered across major disciplines? (2) How do these disciplinary understandings compare to baseline understandings of sanitation, i.e. SDG 6 and the sanitation service chain? I led a cross-disciplinary review team from UC Berkeley, Stanford University, and Columbia University. Our discussion and results provide conceptual clarity to the complexity of sanitation systems through (1) the development of an augmented sanitation framework, as well as (2) recommendations for how cross-disciplinary research can support and advance the Sustainable Development Goals.”

Development Engineering Graduates Producing Solutions Scholarship

Engineers have the potential to play an instrumental role in helping marginalized communities improve their living conditions. That is because engineers are adept at applying the principles of science and math to develop socio-economic solutions. For much of the 20th century, people trained in history, law, and sociology were seen as the primary actors for alleviating poverty. Increasingly, engineers who can assimilate these and other disciplines are today’s poverty alleviation strategists—aware that today’s technological leaps forward are creating inequalities that need multiple forms of redress.

The Development Engineering PhD designated emphasis was launched with this in mind. An interdisciplinary training program for UC Berkeley doctoral students from any field, the program requires dissertation research on the application of technology to address the needs of people living in poverty. Originally seeded by USAID, the Development Engineering field is growing. During the 2018-2019 academic year,18 additional students enrolled in the program representing a growth of more than 160 percent from the previous year. They include nine students from the College of Engineering, six students from the College of Natural Resources, two from the College of Environmental Design, and one from the School of Education. Beyond this disciplinary heterogeneity, the program attracts a diverse pool of students: 50 percent of the incoming cohort are women and 25 percent are underrepresented minorities.

Now in its fifth year, the Development Engineering program is producing a wide range of scholarship and its graduates have gone on to positions in academia, industry, the nonprofit sector, and their own enterprises. Below are summaries of recent graduates’ dissertation research.

Inspecting What You Expect: Applying Modern Tools and Techniques to Evaluate the Effectiveness of Household Energy Interventions (2016)

Author: Ajay Pillarisetti, Postdoctoral Researcher at UC Berkeley
Advisor: Kirk R. Smith, Professor of Global Environmental Health
Many low-income families in North India rely on solid fuel use for household cooking, heating, and lighting. Use of these fuel sources result in exposure to fine particles (called PM 2.5) and is one of the leading causes of ill health globally (approximately 4 million premature deaths). This dissertation examines the rollout of PM sensors in these environments, the deployment of 200 advanced cookstoves to pregnant women in India, and examines the adoption rates of various cookstoves in rural districts.

Quantifying the Crisis of Cooking: Next Generation Monitoring and Evaluation of a Global Health and Environmental Disaster (2016)

Author: Daniel Wilson, CEO, Geocene: Sensors and Analytics Connected
Advisor: Ashok Gadgil, Professor of Civil and Environmental Engineering
Since the beginning of the modern Darfur conflict in 2003, violence has forced Darfuri families from their homes.The impetus for the Berkeley-Darfur Stove (BDS) is to reduce the burden and danger IDP women face when acquiring fuel in and around the camps. The BDS’s improved thermal efficiency allows women to cook food using less fuel than a traditional three-stone fire.
In the Global South, cooking stoves’ contribution to human disease is comparable to dirty water and is responsible for more annual deaths than AIDS, malaria, and tuberculosis combined. While biomass-burning stoves generate over 1 billion tonnes of carbon dioxide annually, the shipping of resources to communities often increases carbon dioxide use. Though estimating carbon dioxide use is often a flawed science, quantifying this ecological and health problem is a first step to addressing the solutions.

Health, Human Capital, and Behavior Change: Essays in Development Microeconomics (2016)

Author: Angeli Kirk, Affordable Internet Research Manager at Facebook
Advisor: Elisabeth Sadoulet, Professor of Agricultural and Resource Economics
This dissertation combines three empirical studies of household behaviors as they relate to investment in health and human capital in developing countries. The first explores how changes in children’s nutrition in Uganda correspond to household income. The second studies measurement activities in a cookstove intervention in Darfur, Sudan, with insights into what may be missed in traditional evaluation approaches as well as how technology adoption may benefit from an unintended “nudge.” The third evaluates the impacts of a conditional cash transfer program in El Salvador, with a focus on how program compliance and benefits change time allocations among household members.

Case Studies of IDEO.org and the International Development Design Summit (2016)

Author: Jessica Vechakul, Designer and Social Innovation Strategist
Advisor: Alice Agogino, Professor of Mechanical Engineering
In the social sector, programs often fail due to a lack of understanding of the norms, knowledge, and needs of the people who execute and benefit from the solutions offered by those programs. Human-Centered Design (HCD) offers a broadly-applicable problem-solving framework and methods for developing an in-depth understanding of people who are directly impacted by development challenges, generating creative ideas, and rapidly learning from small-scale pilots. This dissertation characterizes two drastically different approaches for teaching and practicing HCD for Social Impact: that of IDEO, a company that pioneered the HCD approach, and that of the International Development Design Summit program, in which students and members of low-income communities learn to design appropriate technologies and launch social enterprises.

Effects of Air Flow Modifications on Biomass Cookstoves (2016)

Author: Kathleen Lask
Advisor: Ashok Gadgil, Professor of Civil and Environmental Engineering
Since biomass cookstoves use wood, charcoal, crop residues, and/or animal dung as fuel, emissions from cooking lead to possibly fatal health effects. When researching the effects of the Berkeley-Darfur cookstove, a design said to pollute less, measurement sensors are often designated far away from the source, which miss the cookstove’s combustion efficiency. This dissertation focuses on the pollutant production, measured by the opacity or soot volume fraction of both the Berkeley-Darfur and conventional cookstoves to paint a more detailed comparison between the two.

Designing and Evaluating Novel Approaches to Nitrogen Recovery from Source-Separated Urine (2017)

Author: William Tarpeh, Assistant Professor of Chemical Engineering, Stanford University
Advisor: Kara Nelson, Professor of Civil and Environmental Engineering
Cattle breeding is a major contributor to greenhouse emissions, using about 30 percent of the Earth’s land surface and producing about 70-120 kg of methane per cow. Recovering nitrogen from collected urine can reduce the costs and environmental impact of mass animal raising. Focusing on how to strip nitrogen with 93 percent efficiency, this dissertation examines a new approach that holds promise for creating greener agriculture.

Harmonizing Technological Innovation and End-of-Life Strategy in the Lighting Industry (2017)

Author: Rachel Dzombak, Blum Center Researcher and Lecturer
Advisor: Arpad Horvath, Professor of Civil and Environmental Engineering and Sara Beckman, Professor Haas School of Business
Climate change and a growing global population are placing considerable constraints on material, water, and energy resources. Tracking the product life of LEDs may provide insights as to how products are managed throughout the lifecycle as well as their end-of-life fate. Primarily, this dissertation examines current end-of-life strategies, how various design choices and failure modes influence a product’s options at end of life, and how economic costs and environmental impacts vary among end-of-life strategies.

Designing a Scalable and Affordable Fluoride Removal (SAFR) Process for Groundwater Remediation in India  (2017)

Author: Katya Cherukumilli, CEO, Co-founder, and Technical Lead, Global Water Labs and University of Washington Commercialization Fellow
Advisor: Ashok Gadgil, Professor of Civil and Environmental Engineering
Globally, 200 million people are at risk of adverse health effects from drinking groundwater contaminated with geogenic fluoride concentrations exceeding the World Health Organization’s maximum contaminant limit. Although many defluoridation technologies have been demonstrated to work in lab, most have proven inappropriate for developing countries because they are cost-prohibitive, require skilled labor, or are difficult to scale. Activated alumina (AA) column filters are widely used by the upper middle class but production of AA remains costly in terms of money, energy, and greenhouse gas emissions. Eliminating these energy-intensive steps in refining bauxite, a ubiquitous aluminum-rich ore ($30/tonne), to AA ($1,500- $2,000/tonne), has the potential to reduce the annual per-capita material cost of treated water significantly. The purpose of this dissertation is to ascertain the use of bauxite as a potentially inexpensive defluoridation technology through experimental studies characterizing globally diverse bauxite ores and tradeoffs associated with mild processing steps to enhance fluoride removal performance.

Demand-side Knowledge for Sustainable Decarbonization in Resource Constrained Environments: Applied Research at the Intersection of Behavior, Data-Mining, and Technology (2017)

Author: Diego Ponce de Leon Barido, founder of Three Stone Analytics
Advisors: Daniel M. Kammen, Duncan Callaway, and Alexey Pozdnukhov
The global carbon emissions budget over the next decades depends critically on the choices made by fast growing emerging economies. However, few studies exist that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Among other things, this dissertation investigates the role and importance of high-resolution open access data and modeling platforms to evaluate fuel- switching strategies. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices.

Elucidating Liver Fluke Transmission Dynamics: Synthesizing Lab, Field, and Modeling Methods (2018)

Author: Tomas Leon, Postdoctoral Researcher at UC Berkeley School of Public Health
Advisor: Robert C. Spear, Department of Environmental Health Sciences
In northeast Thailand, infection with the Southeast Asian liver fluke Opisthorchis viverrini is a public health priority, infecting over 50 percent of the population in some villages and causing 5,000 excess cancer cases per year. People acquire the parasite by eating raw or undercooked fish, a deeply embedded local cultural and culinary tradition. Health education is essential to preventing and controlling the disease, but the environment also plays a major role in enabling and catalyzing transmission between hosts. An emphasis on disease ecology and the environmental determinants of transmission is useful and necessary for public health understanding and for informing and designing future treatment and control interventions. This dissertation takes that approach, investigating each disease host and linkage for the role of the environment in influencing transmission.

Pursuing a Career in Engineering Co-Design: A Q&A with Ryan Shelby

By Tamara Straus

When Ryan Shelby left UC Berkeley with a PhD in Mechanical Engineering in 2013, he and his advisor considered his dissertation unusual. Shelby’s PhD research went beyond traditional engineering. It presented design theory and methodologies and was based on his involvement in building sustainable housing and renewable power systems with the Pinoleville Pomo Nation in Ukiah, California.

“Looking back, I was a bit of an odd duckling,” said Shelby, now a Diplomatic Attaché and Foreign Service Engineering Officer at the United States Agency for International Development in Haiti. “I wanted to do PhD work that was applied and more meaningful in a development context.”

Shelby failed his first qualifying exam. But the setback forced him to delve beyond engineering and become a technology for development polymath. He steeped himself in business, environmental science and policy, ethnographic studies, development theory, information technology, and the history of Native American tribes. When Ryan was handed his diploma, he continued along this interdisciplinary path. During the summer of 2013, he served as a Science, Technology & Innovation Fellow at the Millennium Challenge Corporation. He then worked in Sub-Saharan Africa and other emerging regions as a senior energy advisor for the U.S. Office of Energy and Infrastructure, landing in 2016 the position as a USAID foreign service engineering officer.

At USAID, Shelby has been developing and managing Haiti’s Build Back Safer II program, for which he recently won an award. Build Back Safer II provides local job training and material sourcing for hurricane-resistant building structures. To date, the program has resulted in 4,000 home roof repairs, the training of over 2,000 people (60 percent women) in roof rehabilitation techniques, and the completion of scores of handwashing and toilet facilities in areas damaged by Hurricane Matthew. Build Back Safer’s II next stage of repairs will focus on microgrid rehabilitation, water point upgrades, and sanitary block restoration in health clinics.

At UC Berkeley, Shelby remains a model for engineering Berkeley PhDs who want to do interdisciplinary research in low-income regions and use their technology skills. The graduate program in Development Engineering comes in part out of his quest to do applied engineering at the dissertation stage. To learn more about his trajectory as well as his views on engineering co-design, the Blum Center spoke with Ryan Shelby from his USAID office in Port-au-Prince, Haiti.

How did your upbringing influence your academic and career pursuits?

I grew up in really rural Alabama, in Letohatchee, where there were about 600 to 700 people. My Dad had a farm there. I always liked to tinker—mess around with my Dad’s tractor, take apart my Mom’s vacuum cleaner. Luckily, my parents indulged me and I had a natural affinity for math. They let me to go to Alabama Agricultural & Mechanical University, an historically black college that had a very good engineering program. I majored in mechanical engineering with a focus on propulsion systems. It was 2003/2004 when President Bush talked about going after more alternative, sustainable energy approaches. That was pretty exciting to me, but Alabama A & M didn’t have an energy program. That’s when the dean of my university, Dr. Arthur J.  Bond, told me about UC Berkeley and Professor Alice Agogino. He made the connection for some mentoring with her, and she encouraged me to apply. She said I could pursue design, energy, and engineering work.

Would you advise engineering PhD students to do applied work while in university?

In academia, there’s a lot of amazing ideas and technologies. But transferring those ideas into a practical technology that can be built and implemented at scale and have impact within a short time horizon—that’s not something easily done. Still, I would encourage people do this in an academic setting, because it’s a lot easier to do theoretical and applied work and fail and learn from those mistakes, as opposed to when you’re out in the policy world or in industry. The more you ideate, the more you fail, the more information you gather. It allows your next version to reach a more optimal solution.

How does USAID view university-incubated innovations?

The applied work university researchers do makes it a lot easier for us on the government side to say, “It’s been peer-reviewed and tested. Now let’s learn from what the Ivory Tower has done and integrate the work into our projects.” That’s how USAID under the Obama administration and now under the Trump administration is approaching university innovators. We realize universities have great ideas; they may be too high risk for industry to fund. But the U.S. government is willing to make informed decisions to invest in these technologies, so we can grow them and integrate them into our work—and ideally leapfrog pitfalls some countries face in their self-reliance and overall growth.

Are you working with universities in your Build Back Safer II program in Haiti?

Yes, we are partnering with the American University of the Caribbean in Les Cayes, Haiti and the Swiss Development Corporation to develop training programs on rehabilitation techniques and housing upgrades for homes and other vertical structures that were damaged by Hurricane Matthew. We identify masons and carpenters and others in the community who have some technical skills and interest in learning new vocational skills, and train them in hurricane repair and making proper foundations. We’ve combined that with vendors in the area, to source the right materials, so they can go out and implement a lot of these repairs—on roofs, water distribution points, and on two solar microgrids in the southern part of Haiti.

What combination of skills did you deploy to develop this program?

I designed this program because of my experience with the Pinoleville Pomo Nation. Coming in and putting in a solution that does not fit the cultural context is not the best way to ensure sustainability and self-reliance. Rather, you need to understand community needs, understand situated knowledge. In Haiti, we want to give community members access to the latest technology and building techniques. For me, this requires learning the Haitian way of building, and co-creating a shared knowledge base of how we can go out and do housing repair work that pulls from these knowledge bases. One the traditional building techniques here is called clissage, where you weave pieces of wood of varying tensions to create strong foundations and vertical structures. What we’re doing is showing Haitians how they can bolt onto clissage more modern and hurricane-resistant techniques for roof design and installations.

Is there a fairly straight line from your doctoral work to your current USAID work? 

I told Alice [Agogino] it’s like déjà vu. My work in Haiti is almost a mirror image of the dissertation work I did at Berkeley. It’s still housing, design, and rehabilitation work, and it’s also energy systems to provide electricity to support economic growth. This is the exact thing I did with the Native American tribe. I’m using the same research techniques and codesign methodology with these Haitian communities. If I hadn’t done this dissertation work at Berkeley with Native American communities in California, I would find my job at USAID hard to do. I wouldn’t have the theoretical background or the tangible experience to prepare me for this work.

Which thinkers would you recommend to students in development engineering?

I highly recommend [UC Santa Cruz Professor] Donna Haraway’s work on situated knowledge as a core tenet of co-design and co-creation. Situated knowledge pulls from environmental science policy and feminist theory, and provides an intellectual framework for understanding and utilizing people’s knowledge bases. I also recommend [Harvard Professor] Sheila Jasanoff’s work on the co-production of knowledge and [Rutgers University] Frank Fischer’s work on citizens as experts of the environment. Dr. Fisher writes about how communities work with outsiders to understand environmental impacts and how to try to design and implement solutions.

How has the field of development changing, particularly for the U.S. government?

It really hasn’t changed that much between Administrations. Both the Obama and Trump Administrations have pushed to work with nontraditional actors, including universities. One big difference with development under the Trump Administration is we’ve increased the focus of self-reliance and co-creation. Our goal is to partner with a host country governments and co-design solutions with them, so that the host country itself can do the implementation work and not have to rely fully on the U.S. government. Under the Trump Administration, USAID is committed to streamlining our procurement approaches and increasing the usage of co-creation design approaches within new awards by 10 percentage points in Fiscal Year 2019. We want to continue to partner with universities, partner with private sector, partner with religious groups, partner with other nontraditional actors—so we can get the best technologies, solutions, and innovations to fit the needs of a host country government and get it out in the field as quickly as possible. The aim is to improve their resiliency and self-reliance and reduce their overall dependency on U.S. foreign aid as well as eventually open up new markets for American goods and services.

What would you recommend to Development Engineering students who want to work for USAID and other governmental organizations?

The transition from a more research background into development or the policy arena can be as perilous as crossing the sea with the sirens Scylla and Charybdis on either side. To navigate this path, I would recommend engaging in more applied research while at Berkeley with professors like Alice [Agogino], Alastair [Iles], Ashok [Gadgil], and Dan [Kammen] to get a better understanding of this space. Next, I highly recommend that students consider pursuing science and technology policy fellowship programs, such as the Christine Mirzayan Science & Technology Policy Graduate Fellowship Program at the National Academies, the California Council on Science and Technology, or the Institute for Defense Analyses Science and Technology Policy Institute (STPI) Fellowship. These programs are designed to help Bachelor, Master, and PhD candidates and recipients to understand how science is utilized in development and policy making.  My experience as a Fall 2012 Mirzayan Fellow was instrumental in helping me land my job at the Millennium Challenge Corporation and USAID, as the National Academies taught me how to translate science and engineering speak into the language and format of a policy brief.   Moreover, I was able to use my time at the National Academies to conduct informational interviews with development professionals within government as well as in for-profit and nonprofit organizations, to better learn which technology gaps and other seemly intractable problems that were encountering.  These interviews and the knowledge that I gained were instrumental in helping me find and land a position at USAID.

InFEWS Fellows Take on Sustainable Development Goals

By Tamara Straus

The goal of the PhD is to do original research in a specific discipline. That means in-depth and often narrow inquiries that build on academic knowledge. But for many STEM and social science graduate students, the great draw of the PhD is developing research that can have wide societal benefit—in clean water or pollution reduction, for example—and be implemented through government or business.

Since 2017, the Blum Center for Developing Economies has been enabling graduate students to develop societal benefit research through the InFEWS—Innovations at the Nexus of Food, Energy, and Water Systems—program funded by the National Science Foundation. InFEWS provides fellowships and travel stipends for students whose PhD research aims to provide lasting environmental solutions and alleviate poverty in the world’s poorest regions. The program’s mandate is to train a new generation of interdisciplinary STEM researchers and practitioners who can improve the living standards of Americans and meet the United Nation’s Sustainable Development Goals.

The requirements are broad. InFEWS Fellows must address challenges at the intersection of food, energy, and water systems. Their research must take into consideration climate variability, water, and pollution, along with changing demographics in a world where the poor and rural have insufficient access to basic resources. To meet these challenges, InFEWS Fellows are asked to engage in interdisciplinary research activities and course work, including human-centered design and lean start-up approaches, as well as pursue immersive lab and field training. Students are also expected to gain experience in needs assessment, analysis of qualitative and quantitative data, and concept testing.

This year’s cohort of InFEWS Fellows includes 37 students from 13 schools and departments at UC Berkeley, including the School of Information, College of Natural Resources, Haas School of Business, College of Engineering, and Goldman School of Public Policy. Sixty five percent of the fellows are women and 25 percent are under-represented minorities, which is typical of STEM programs that address global challenges. In addition, 25 of the 37 fellows are also in the Blum Center’s Development Engineering program, which has similar goals in terms of training engineers who want to use technological innovations to address poverty.

Below are Q&As with four current InFEWS Fellows.

Sara Glade

Sara Glade is a PhD student in Environmental Engineering whose InFEWS work focuses on drinking water treatment technology development and implementation.

Why did you seek to become an INFEWS Fellow and Development Engineering student?

My exposure to Development Engineering began during my undergraduate career when I was introduced to the organization Engineers Without Borders. I became deeply invested in the chapter, working on a water supply project in Haiti and a bridge project in Nicaragua. My passion for water came to fruition in the field in Haiti, after seeing children walk miles to collect polluted water. Here I learned the potential of engineering and water to improve the quality of people’s lives, which inevitably drew me to be interested in researching water treatment technologies for disadvantaged regions.

At UC Berkeley, I have been part of many social impact driven engineering projects. In the course DE 200, I worked with Sanivation, a container-based sanitation company located in Kenya. In CE 209, I worked with Berkeley-based startup SimpleWater to survey rural communities in California with arsenic contaminated drinking water about their water and point of use treatment. I learned first-hand the challenges communities throughout the Central Valley and the U.S. face with drinking water contamination. This ignited a strong interest in using Development Engineering to work on U.S. water issues, which I carried into my research. All of these experiences, before and during Berkeley, ultimately led me to the Development Engineering program.

Throughout my time at Berkeley, I have also grown to better understand and appreciate the link between food, energy, and water systems, and this drew me to the InFEWS program. My current research has also pushed me to think critically about these connections as well.

Tell us about your current research.

My current research started in quite a unique way. A UC Davis professor visited a community in the California Central Valley, in Allensworth, and met several community members looking for appropriate arsenic treatment technology solutions. This professor then contacted my advisor, Ashok Gadgil, because the Gadgil Lab has over 10 years of experience working on a novel arsenic treatment technology called ElectroChemical Arsenic Remediation (ECAR).

On our first call with several community leaders, we were asked to help treat water on their farm for a livestock application. The development of ECAR at small scale on this farm site would be a unique opportunity for economic development in the community, for fresh food to be available nearby, and could also enable next steps of a demonstration plant and community treatment plant for drinking water. I knew this project would be perfect for my interests in U.S. water, treatment technology development, and implementation.

Thus far, I have conducted lab scale tests to understand parameters useful in designing the field trial, have developed design constraints unique to the U.S. context, have discussed the field trial design with our community partners, and have presented our work to a number of stakeholders, including local nonprofits. The next step of this work is to finish raising funds, and then implement and operate the field trial. Alongside the field trial, I plan to conduct interviews with community members to understand their perception of this new technology. Overall, I hope to increase knowledge around appropriate drinking water treatment technology development and implementation in small, low-income communities in the United States.

What are your long-term goals?

After my PhD, I would like to continue working on development and implementation of water treatment projects, either in the U.S. or internationally, and could see myself working in low-resource regions on projects that are in between basic science and commercialization. It seems amazing technologies and research that could serve the needs of disadvantaged populations sometimes get stuck in papers or at small scale. I hope to work on bridging this gap throughout my future career, with the hopes of bringing to fruition many technologies that otherwise would stay trapped in a text. I am also considering doing a policy fellowship after my PhD. From the work I have done on U.S. water thus far, I have become very interested in how policy can prohibit or enhance access to safe drinking water in affected regions.

Christopher Hyun

Christopher Hyun is pursuing a PhD from the Energy and Resources Group with a designated emphasis in Development Engineering; his InFEWS work focuses on water and sanitation planning.

What drew you to the InFEWS Fellowship?

What drew me to InFEWS is its community of learning. I’ve been working in the development sector for over a decade, gaining experience in income generation, capacity building, and water- and sanitation-related research. I’ve had the privilege of working with environmental organizations and institutions on water and sanitation, such as the Centre for Science and Environment, Banaras Hindu University, IIT-Bombay, and CDD Society in India. Sanitation is not often considered an important sector at the nexus of food, energy, and water, although FEW systems thinking has the potential to help solve sanitation’s challenges; so this is an opportunity for me to learn from other scholars in the InFEWS community. Also, I am currently observing a sanitation revolution occurring in the development sector about which I am excited to share with the community as innovations unfold, integrating with an increasing number of FEW systems. Furthermore, I enjoy contributing to discussions about the relationship between technological innovation and social structures as well as general social and governance perspectives of FEWS.

What are your overall research interests?

I recently completed a research project, working with water valvemen to help improve intermittent water systems and partnering with NextDrop and the Bangalore Water Supply and Sewerage Board. As I continue with my PhD research, I hope to uncover pro-poor sanitation solutions that have long-term impacts on food, energy, and water systems in urban contexts of low- and middle-income countries. I focus on the governance of sanitation in urban India, following decision-making by international funders and government officials as well as by the engineers who design low-energy intensive technologies (such as biogas digesters) and the local farmers who reuse the wastewater and fecal sludge. I am particularly interested in capacity building for innovative sanitation solutions and how capacity building is conceptualized and implemented across scales of governance in sanitation.

Why is capacity building so important in your research?

Local officials and engineers often don’t have the capacity to make design decisions, and farmers may oppose new sanitation systems as they would rather obtain fecal sludge directly (but unsafely) from septic trucks. In my research, I aim to understand such local dynamics and to uncover ways to mitigate the gaps between scales of sanitation governance. Capacity building is often considered a solution to such challenges. I partner with the Consortium for DEWATS Dissemination (CDD) in India, internationally recognized for innovations in low-cost sanitation systems, reuse, and capacity building. I have worked closely with CDD, designing and implementing sanitation training focused on CDD’s “toilet to table” philosophy. In research, I utilize an ethnographic approach, conducting observations and interviews with stakeholders, civil society organizations, and government officials.  My goal is not only to uncover how capacity building can be more effective, but more fundamentally how capacity building is being defined and implemented, including by whom and for whom. Uncovering capacity building not only informs development practice but it also helps us understand how and why technological transitions may (or may not) happen, which I believe is at the heart of both Development Engineering and InFEWS.

George Moore

George Moore is a Mechanical Engineering and Development Engineering doctoral student whose InFEWS research focuses on food, energy, water systems with the Pinoleville Pomo Nation of Northern California.

What drew you to research on sustainable energy and water resources?

My first opportunity to work on InFEWS-related research came during my summer research internship at the University of Michigan in 2015. There, I studied a sustainable manufacturing project for an underdeveloped community in Uganda. Reflecting on my own experience growing up as a minority in the rural South, this project made me feel personally connected and empathetic towards underserved communities globally. I read about several case studies where organizations or researchers engaged with communities in developing countries and the original plan of action had to be altered to accommodate for context and cultural values that could not have been foreseen. Although this seems obvious to me now, I was surprised and grew curious about the methods used to design for communities like these in ways that would precipitate not only tangible goods, but also sustainable practices related to the handling of primal needs like food, water, and energy resources.

How did you come to work with the Pinoleville Pomo Nation (PPN) of Northern California?

As a PhD student working with Professor Alice Agogino and two other graduate students, I helped plan field research conducted at the PPN’s annual Big Time festival in Summer 2017. There, we were able to observe and engage with the PPN community in their own sacred environment. In addition, we provided an exercise that encouraged PPN members, and others in attendance, to articulate their opinions of the current problems within the PPN community as well as potential solutions to those problems. We offered five suggestive themes to categorize these responses, in which most of them cater to the vision of the InFEWS initiative: Food, Water, Energy, Education, and Well Being.

Since then, we have continued to work with PPN community leaders to establish how to progress with a project that would align the needs of the PPN community with those of our research goals. The PPN community has expressed interest in STEAM (Science, Technology, Engineering, Art, and Math) Education, and over the past year has started an Academic Success Center, invested in a makerspace, and finished the second year of its annual STEAM summer camp. With this in mind, we have re-framed our research scope to emphasize InFEWS themes within the context of STEAM education and the design of culturally sensitive makerspaces.

What are your long-term goals?

I’m genuinely excited to be working on a project that aligns so much with my personal and academic goals. I think that success for the PPN project requires our roles as facilitators to become obsolete—creating lasting change that will continue long after our presence is removed. Also, we hope that whatever is produced from this collaboration upholds the values of the community. To achieve that goal, we have been careful to minimize the ideas and subtle influences that we might impose as researchers.

Lorenzo Rosa

Lorenzo Rosa is a PhD candidate in the Department of Environmental Science, Policy, and Management whose InFEWS research investigates where water scarcity may limit energy and food systems.

How have your academic interests informed your InFEWS work?

My training is in engineering, hydrology, and energetics. Before pursuing a PhD at UC Berkeley, I received master’s and bachelor’s degrees in Environmental Engineering from Polytechnic University of Milan, Italy and studied abroad at KTH Royal Institute of Technology and the University of Virginia. Since 2017, I have been awarded an Ermenegildo Zegna Founder’s Scholarship. Over the years, while studying the chemical processes of engineering as they relate to the environment, I noticed that the biggest environmental polluters are the food and energy sectors. This got me thinking I should focus on energy and food systems and hydrology to develop a framework using water balance.

Why focus on water balance?

An often-overlooked aspect of water requirements for economic activities is that water is a limited resource and some of these activities could be constrained by water scarcity to the point of limiting the development of some assets. For instance, lack of water resources can impede the extraction of some minerals, the generation of electricity from coal fired and solar power plants, the production of biofuels, or the closure of the yield gap in agricultural land. In all of these cases, water scarcity might be a limit to these activities.

While substantial additional water will be required to support future food and energy production, it is not clear whether and where local freshwater availability is sufficient to sustainably meet future water consumption. The extent to which irrigation can be expanded within presently rain fed cultivated land without depleting environmental flows remains poorly understood. It also remains unclear where and to what extent new water demanding energy projects, such as post- combustion CCS and hydraulic fracturing, might be constrained by local water availability.

How does your research on water scarcity differ from other assessments?

Previous efforts have assessed the water footprint of energy and food systems from the life cycle assessment perspective, focusing on a comprehensive accounting of all water costs associated with production and processing, but without examining the availability or source of the required water. The novelty of my research consists in the assessment of the impacts of energy and agricultural systems on the local water balance using a hydrologic approach, identifying the regions in which new forms of potential water consumption from the energy sector could compete with agriculture and other human activities, and areas in which water demand from energy and/or food systems could not be sustainably met because of water scarcity.

I believe neglecting water availability as one of the possible factors constraining the development of economic activities may lead to unaccounted business, social, and environmental risks. By adopting a hydrologic perspective that considers water availability and demand together, my aim is that decision makers, investors, and local communities can better understand the water and food security implications of energy and agricultural production while avoiding unintended environmental consequences.

Tell us about your dissertation work.

My dissertation will provide a quantitative framework to make informed investment decisions involving natural assets that are susceptible to water risks. As such, I am currently investigating where water scarcity may limit hydraulic fracturing and food production–thus creating risks for local populations and investors. My goal is to identify global hotspots of where human activities compete for water allocations, potentially creating social, environmental, and economic risks. My belief is that the limited understanding of the potential impacts of human activities on water resources prevents the implementation of a sound management plan for a sustainable human development. For example, we are depleting ecosystems in rivers because we are taking too much water from them. The classic example is the Colorado River. It runs dry and the water does not reach the ocean. Another example is non-renewable ground water mining. Water that was stored millennia ago is being used unsustainably in India, Pakistan, and Central California, among other places.

They key is understanding where we can increase water production, because we know the population is going to reach 9.5 billion by 2050. We’ll need to add 50 percent of current water production to feed all these people. And so we’ll need to figure out where we can (and cannot) produce more food with water in a sustainable way. In other words, we’ll need to move production where the water is or swap crops or use less water-intensive crops or transport water—so that we can increase food production for 2.8 billion people.

The InFEWS program is supported by the National Science Foundation (infews.berkeley.edu ; DGE # 1633740).

Why Interdisciplinary Project-Based Learning? Assessing the Benefits and Challenges at U.S. Institutions of Higher Education

By Nicole Rangel

College graduates with interdisciplinary and hands-on skills are in demand in today’s job market. Because they have exposure to more than one discipline and curiosity about the interplay of fields, these graduates are being positioned as necessary to solve societal challenges–from natural disasters and climate change to automation-induced unemployment and epidemics. This shift in academic training is a response to a growing recognition that social, governmental, and business challenges require the collaboration of people with educational training in engineering, law, business, physical science, medicine, agriculture, economics, urban planning, humanities, and computer science–and, most important, the ability to work together interdisciplinarily.

Yet offering curricula that aims to develop students’ interdisciplinary and project-based learning acumen is a challenge for many institutions of higher education. While there is substantial evidence to suggest this educational approach ought to be prioritized, we know little about academic programs that do prioritize education which prepares students to understand and engage with complex real-world problems.

The Blum Center for Developing Economies at UC Berkeley has begun to address this research gap by examining curricula that converges these two pedagogical approaches. The Blum Center is one of a number of academic programs across the country [see chart below] that offers hands-on learning experiences, which aim to help students understand their future roles outside the university. The center also facilitates interdisciplinary collaborations among students, researchers, and faculty to solve grand challenges in water, energy, education, healthcare, and wireless communications, among other areas.

The Blum Center is home to Development Engineering, an interdisciplinary field at UC Berkeley created in 2014 that integrates engineering, economics, business, natural resource development, and social sciences to create,implement, and evaluate technologies that address the needs of people living in poverty. Development Engineering’s core class, DevEng 200, is organized around three thematic modules: 1) understanding the problem, context, and needs of a community receiving the intervention; 2) creating effective prototype technologies to social problems; and 3) field testing and assessing the impact of these technologies on the receiving communities.

While the prototypes developed in courses like this one foster interdisciplinary understanding, it is still unclear how they cultivate intellectual strengths from one student in, say, mechanical engineering to another student in, say, public health. In other words, how is the sociological understanding of an engineering student or the design/evaluation skill of a public health student cross-cultivated in this course? How do students push themselves to learn skills that lay outside their expertise under the pressure of academic deadlines? And how do faculty assess aptitude of students in these interdisciplinary skills? The Blum Center is working to understand these questions as well as others, as it strives to provide project-based education that is rigorous not just in process, but also in its interdisciplinary content.

Research about project-based learning has mostly concentrated on K-12 education, and little exists on interdisciplinary project-based learning.Thus in our initial stage of inquiry, the Blum Center has reached out to over a dozen U.S. colleges and universities with academic programs similar to the Development Engineering graduate emphasis, to better understand the broader landscape of interdisciplinary project-based learning in higher education. We administered a short survey, and from the responses received have identified several areas in interdisciplinary project-based learning curricula that merit further investigation. They include:

  1. The experience of co-teaching, specifically between engineering and social science faculty, to better understand how co-teachers encourage interdisciplinarity among students from different majors.
  2. The need to identify best practices among faculty who have taught in this space, with complementary input from the participating students about their perceptions of these approaches.
  3. An assessment of the opportunities and challenges involved in interdisciplinary project-based learning, according to faculty and students. Because interdisciplinary project-based learning is not the norm, it is crucial to understand what faculty and students see as the incentive for engaging in this type of learning and what are the challenges in offering it.

Specifically, project-based learning has been credited for appealing to students’ motivations, strengthening their ability to problem-solve, refining their conceptual knowledge, and fortifying their sense of agency. Interdisciplinarity is recognized as fundamental for preparing students for democratic participation and is a growing imperative for U.S. colleges and universities at both undergraduate and graduate levels.

In line with what the literature suggests, the Blum Center sees promise in project-based learning, particularly when taught with an interdisciplinary approach. In the coming months, we will share a report that aims to deepen our understanding and ability to provide meaningful and effective education that not only benefits students, but also enterprises and communities around the world in need of support.

For an example of the Blum Center’s previous work in this area, see the Development Engineering Toolkit: Lessons on Implementing a New Multidisciplinary Program Uniting Engineering and the Social Sciences

Nicole Rangel is an educator and Ph.D. candidate in the Social and Cultural Studies of Education program at UC Berkeley.

InFEWS Welcomes New Graduate Cohort

Last month, the Blum Center hosted a networking reception for its inaugural cohort of Innovation at the Nexus of Food, Energy and Water Systems (InFEWS) doctoral students.  InFEWS is a prestigious National Science Foundation-funded graduate research program that uses the Development Engineering (DevEng) methodology to create solutions for challenges that span food, energy and water systems in low-resource settings domestically and abroad.

An exceptional and well traveled-group of 19 fellows, the InFEWS Fall 2017 cohort’s research focuses range from environmental science and policy, economics, engineering to social welfare, all of which will help enhance the program’s collaborative and interdisciplinary process. During the reception, Drs. Alice Agogino and Sophi Martin showcased the wide range of resources available to the Fellows, and students shared their research interests and networked with faculty. Students’ research interests include important topics such as resource recovery in rural settings, international development policy evaluation, and access to safe water.

The DevEng program and the Blum Center are excited to welcome these innovative and highly-motivated individuals to InFEWS. Check out infews.berkeley.edu to learn more about the program and to read about the cohort’s progress.

Engineering Improvements for the World

(Published in the Washington Post) By Lina Nilsson and Shankar Sastry In labs around the world, a new generation of engineers is emerging. They are men and women concerned by the gulf between rich and poor and by environmental changes and resource depletion. They are what we call “development engineers” — engineers (and often economics, business and social science majors, as well) who are dedicated to using engineering and technology to improve the lot of the world’s poorest people.